
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1014
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Memory-efficient Short Read Sequence Alignment
Algorithm for Human Genome Sequence

Shovan Roy, Sunirmal Khatua
Abstract— Any genetic change in a population that is inherited over several generations is called Biological evolution. Biological evolution is a

scientific theory that was proposed by Charles Darwin in “The Origin of Species by Means of Natural Selection”. Today we need to build a relation
between the development of methods for the management and analysis of biological information arising from genomics and high-throughput experi-
ments. The development of computational methods for studying the structure, function, and evolution of genes, proteins, and whole genomes form the
bioinformatics. High-throughput experiments produce large amounts of quantitative data. This poses challenges for bio-informaticians. How do we
store information is such a way that it can be compared with results from others? How do we best extract meaningful information from the vast amount of
data? New methods are needed to spot significant trends & patterns in the data. This is a new area of biological sciences where computational methods
are essential for the progress of the experimental science where algorithms & experimental techniques are being developed side by side.

Index Terms— Read, Alignment, BWT, L-F Mapping, Bowtie, Exact Matching, Inexact Matching, MAQ, Full Bowtie Algorithm.

—————————— ——————————

1 PROBLEM DESCRIPTION

n March 1953, Watson and Crick deduced the double he-
lix structure of DNA, thus proving that it carried the genetic

information. The challenge of reading the DNA sequence be-
came central dogma to biological research era. The earliest
chemical methods for DNA sequencing were extremely not
fully capable, laborious and costly. Over the next few decades,
sequencing became more efficient by orders of magnitude. In
the 1970s, two classical methods for sequencing DNA frag-
ments were developed by Sanger and Gilbert. In the 1980s
beside these methods, cloning method allowed fast and expo-
nential replication of a DNA fragment. The human genome
project was started in the 1990s, sequencing efficiency had
already reached 200,000 bp/person/year, and when it conclud-
ed in 2002 this figure had gone up to 50,000,000
bp/person/year. Then new sequencing technologies have
emerged, which now allow the reliable sequencing of 100x109
bp/person/year. At the same time, the cost of sequencing has
also sharply declined.

Sketch the sequencing technology [16, 17, and 18]:
There are two types of nucleic acid in cells- DNA (Deoxyribo-
nucleic Acid) and RNA (Ribonucleic Acid). DNA is a polymer
containing chains of nucleotide monomers. Each nucleotide
contains a sugar, a base, and a phosphate group. The sugar is
2’-deoxyribose which has five carbons named 1’ (prime) 2’ etc.
There are four types of base: Adenine (A) and Guanine (G)
have two carbon-nitrogen rings and are Purines; Thymine (T)
and Cytosine (C) have a single ring and are pyrimidines. A
Sugar + A Base = Nucleoside. A nucleotide has one, two or
three phosphate groups attached to the 5’ carbon of the sugar.

————————————————
• Shovan Roy, M. Tech in Computer Science and Engineering in University of

Calcutta, India, Mob. No.: 9830656545. E-mail: sho.cmsa.08@gmail.com
• Sunirmal Khatua, Assistant Professor, Department of Computer Science and

Engineering, University College of Science and Technology, University of Cal-
cutta, Kolkata, 92, A. P. C. Road, Kolkata-700009, India, Ph. No.: 033-
25594177, Mob. No.: 9874872149. E-mail: skhatuacomp@caluniv.ac.in

A Sugar + A Base + A Phosphate Group = Nucleotide. In RNA
thymine (T) is replaced by uracil (U) & 2-deoxyribose by ri-
bose. It is a single polynucleotide strand. A, G and T, C form
the sequence termed as read and they form the input for the
computational problems.

We first focus on the problem of aligning the reads to
the genome.

Problem: Short read mapping problem.
Input: m l-long reads S1, . . . ,Sm and an approximate reference
genome R.
Question: What are the positions x1, . . . ,xm along R where
each read matches?

An example of this problem is when we sequence the
genome [15] of a person and wish to map it to an existing se-
quence of the human genome. The new sample will not be
100% identical to the reference genome due to the natural var-
iation in the population, and so some reads may align to their
position in the reference with mismatches or gaps. In diploid
organisms, such as human beings, different alleles on the ma-
ternal and paternal chromosomes can lead to two slightly dif-
ferent reads mapping to the same location (some perhaps with
mismatches). Additional complications may arise due to se-
quencing errors or repetitive regions in the genome which
make it difficult to decide where to map the read.

2 POSSIBLE SOLUTIONS OF THE ABOVE MAPPING
PROBLEM

2.1 Local Alignment [4, 8, 12]
The problem of aligning a short read to a long genome se-
quence is exactly the problem of local alignment. However, the
large parameters involved make such an approach impractical.
In the human genome example, the number of reads m is usu-
ally 107-108, the length of a read l is 50-200 bp and the length of
the genome |R| is 3.109 bp (or twice, for the diploid genome).

I

IJSER

http://www.ijser.org/
mailto:sho.cmsa.08@gmail.com
mailto:skhatuacomp@caluniv.ac.in

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1015
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Let us consider some other possible solutions:
I. The most naive algorithm would scan R for each Si,

matching the read at each position p and picking the
best match. Time complexity: O (ml|R|) for exact or
inexact matching. Considering the parameters men-
tioned above, this is clearly impractical.

II. A less naive solution uses the Knuth-Morris-Pratt al-
gorithm (KMP algorithm) to match each Si to R.

Time complexity: O (m (l+|R|)) = O (ml + m|R|) for exact
matching. This is a substantial improvement but still not
enough.

III. Building a suffix tree [5] for R provides another solu-
tion. Then, for each Si we can find matches by travers-
ing the tree from the root. Time complexity:
O(ml+|R|), assuming the tree is built using
Ukkonen's linear-time algorithm. This time complexi-
ty is certainly practical, and it has the additional ad-
vantage that we only need to build the tree for the
reference genome once. It can then be saved and used
repeatedly for mapping new sequences, at least until
an updated version of the genome is issued.

However, space complexity now becomes the obstacle the
leaves of the suffix tree also hold the indices where the suffixes
begin, saving the tree requires O (|R|log |R|) bits just for the
binary coding of the indices, compared with |R|log |R|) bits
for the original text. The constants are also large due to the
additional layers of information required for the tree (such as
suffix links, etc.). Thus, we can store the text of the human ge-
nome using ~750MB, but we'd need ~64GB for the tree! The
resultant size is much greater than the cache memory of most
of today's desktop computers. Another problem is that suffix
trees allow only for exact matching.

IV. A fourth solution is to preprocess the reference ge-
nome into a hash table H. The keys of the hash are all
the substrings of length l in R, and the value of each
key is the position p in R where the substring ends.
Then, given Si the algorithm returns H (Si).

Time complexity: O (ml + l|R|), which is pretty good. The
space complexity, however, remains too high at O (l |R| + |R|
log |R|) since we must also hold the binary representation of
each substring's position. A practical improvement which can
be applied is packing the substrings into bit-vectors, that is
representing each nucleotide as a 2-bit code. This reduces the
space complexity by a factor of four. Further improvement can
be achieved by partitioning the genome into several chunks,
each of the size of the cache memory, and running the algo-
rithm on each chunk in turn. Again, this approach only allows
exact matching.

2.2 What is my Target?
We have seen that one way to map reads to a reference ge-
nome is to index into a hash table either all l-long windows of
the genome or of the reads. Holding these indices in memory

requires a great deal of space, as discussed in above section. I
suggest the Bowtie algorithm [1] to solve this problem.

2.3 Definition and Problem Formulation
The Bowtie algorithm, presented in 2009 by Langmead [1],
solves problem through a more space-efficient indexing
scheme. This scheme is called the Burrows-Wheeler transform
[2] and was originally developed for data compression pur-
poses. In the following section, we will describe the transform
and its uses by following a specific example.

2.4 Implementation
2.4.1 Burrows-Wheeler Transform (BWT) [2, 11]
BWT originally designed for data compression for large text.
The Burrows-Wheeler transformation of a text T, BWT (T), is
constructed as follows:

I. The character $ is appended to T, where $ is not in T
and is lexicographically less than all characters in T.

II. The Burrows-Wheeler matrix of T is constructed as
the matrix whose rows comprise all cyclic rotations of
T$.

III. The rows are then sorted lexicographically.
IV. BWT (T) is the sequence of characters in the rightmost

column of the Burrows- Wheeler matrix. BWT (T) has
the same length as the original text T.

To demonstrate the process, we shall apply the transform
BWT (T) to T=”the_next_text_that_i_index.":

I. First, we generate all cyclic shifts of T.
II. Next, we sort these shifts lexicographically. /* In this

example we define the character ‘.’ as the minimum
and we assume that it appears exactly once, as the last
symbol in the text. It is followed lexicographically by
‘.’, which is followed by the English letters according
to their natural ordering. We call the resulting matrix
M. */

We now define the transform BWT (T) as the sequence of
the last characters in the rows of M. /* Figure1 shows an ex-
ample for the first few shifts. Note that this last column is a
permutation of all characters in the text since each character
appears in the last position in exactly one cyclic shift. */

Fig. 1. Some of the cyclic shifts of T sorted lexicographically and indexed
by the last character.
Saving BWT (T) requires the same space as the size of the text

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1016
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

T since it is simply a permutation of T. In the case of the hu-
man genome, we saw that each character can be represented
by 2 bits, so we require ~2.3.109 bits for storing the permuta-
tion instead of ~30.3.109 for storing all indices of T.
Thus far, we have seen how to transform a text T into BWT (T).
Let us now consider what information can be gleaned from
BWT (T), assuming we do not see T or M:

I. The first question we can ask is: given BWT (T), how
many occurrences in T of the character 'e'?
We can easily answer this by counting the number of
occurrences of 'e' in BWT (T) since we have shown
that this is simply a permutation of the text.

II. Can we also recover the first column of the matrix M?
Certainly! All we have to do is sort BWT (T) since the
first column is also a permutation of all characters in
the text, sorted lexicographically. Figure2 demon-
strates this.

Fig. 2. Recovering the first column (left) by sorting the last column.

III. How many occurrences of the substring 'xt' do we
have in T?

BWT (T) is the last column of the lexico-
graphical sorting of the shifts. Hence, the character at
the last position of a row appears in the text T imme-
diately prior to the first character in the same row
(each row is a cyclical shift). So, to answer this ques-
tion, we consider the interval of 't' in the first column,
and check whether any of these rows have an 'x' at the
last position. In Figure 2, we can see that there are two
such occurrences.

IV. Now we can recover the second column as well.
We know that 'xt' appears twice in the text,

and we see that 3 rows start with an 'x'. Two of those
must be followed by a 't', but which ones? The lexico-
graphical sorting determines this as well. In the above
example, another 'x' is followed by a '.' (see first row).

Therefore, '.' must follow the first 'x' in the first col-
umn since '.' is smaller lexicographically than 't'. The
second and third occurrences of 'x' in the first column
are therefore followed by ’t’. We can use the same
process to recover the characters at the second column
for each interval, and then the third, etc.

We have thus shown two central properties of the transform,
which we now state formally following a formulation by Fer-
ragina and Manzini [3].
Lemma1 (Last-First Mapping):
Let M be the matrix whose rows are all cyclical shifts of T sort-
ed lexicographically, and let L(i) be the character at the last
column of row i and F(i) be the first character in that row.
Then:

I. The ith row of M, its last character L[i] precedes its
first character F[i] in the original text T, namely T
=…L(i) F(i)….

II. The j-th occurrence of character X in L corresponds to
the same text character as the j-th occurrence of X in F.
Let L[i] = c and let ri be the rank of the row M[i]
among all the rows ending with the character c. Take
the row M[j] as the ri-th row of M starting with c.
Then the character corresponding to L[i] in the first
column F is located at F[j] (we call this LF-mapping,
where LF[i] = j).

Proof:
I. Follows directly from the fact that each row in M is a

cyclical shift.
II. Let Xj denote the j-th occurrence of char X in L, and

let α be the character following Xj in the text and β the
character following Xj+1. Then, since Xj appears above
Xj+1 in L, α must be equal or lexicographically small-
er than β. This is true since the order is determined by
lexicographical sorting of the full row and the charac-
ter in F follows the one in L (property 1). Hence, when
character Xj appears in F, it will again be above Xj+1,
since α and β now appear in the second column and
Xα ≤ Xβ (Figure 3 demonstrates this).

Fig. 3. Last-first mapping. Each 't' character in L is linked to its

position in F and no crossed links are possible.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1017
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2.4.2 Reconstructing the Text
We now present an algorithm for reconstructing a text T from
its Burrows-Wheeler transform BWT (T) utilizing Lemma1. In
this formulation, we assume the actual text is of length u and
we append a unique $ character at the end, which is the small-
est, lexicographically (the '.' character played the role of $ in
our example above).
We are therefore ready to describe the backward BWT:
UNPERMUTE [BWT(T)]:

I. Compute the array C[1,…, |∑|] : C(c) is the no. of
characters {$,1,….,c-1} in T.

II. Construct the last-first mapping, tracing every charac-
ter in L to its corresponding position in F:
LF[i] = C(L[i]) + r(L[i], i) + 1, where r(c, i) is the num-
ber of occurrences of character c in the prefix L[1, i].

III. Reconstruct T backwards as follows: s = 1, T(u) = L[1];
(because M[1] = $T); then, for each i = u-1, . . . ,1 do s =
LF[s] and T[i] = L[s].

Fig. 4. Steps taken by EXACTMATCH to identify the range of rows, and
thus the set of reference suffixes, prefixed by 'aac'. Source: [1].
In the above example of Fig. 4, T = acaacg$ (u = 6) was trans-
formed to BWT (T) = gc$aaac, and we now wish to reconstruct
T from BWT (T) using UNPERMUTE:

I. First, the array C is computed. /* For example, C(c) = 4
since there are 4 occurrences of characters smaller
than 'c' in T (in this case, the '$' and 3 occurrences of
'a'). Notice, that C(c) + 1 = 5 is the position of the first
occurrence of 'c' in F. */

II. Second, we perform the LF mapping. /* For example,
LF[c2] = C(c) + r(c,7) + 1 = 6, and indeed the second
occurrence of 'c' in F sits at F[6]. */

III. Now, we determine the last character in T: T(6) = L(1)
= 'g'.

IV. We iterate backwards over all positions using the LF
mapping. /* For example, to recover the character
T(5), we use the LF mapping to trace L(1) to F(7), and
then T(5) = L(7) = 'c'. */

Remark We do not actually need to hold F in memory, which
would double the space we use. Instead, we only keep the ar-
ray C defined above, of size |∑|, which we can easily obtain
by looking at L alone.

2.4.3 Exact Matching

Next, we present an algorithm for exact matching of a query

string P to T given BWT (T). The principle is very similar to
UNPERMUTE, and we use the same definitions presented
above for C and r(c, i). We denote by sp the position of the first
row in the interval of rows in M we are currently considering,
and by ep the position of the first row beyond this interval. So,
the interval is defined by the rows sp ,…, ep - 1.
EXACTMATCH [P[1, . . . , p], BWT (T)]

1. c = P[p]; sp = C[c] + 1; ep = C[c+1] + 1; i = p - 1;
2. while sp < ep and i ≥ 1

c = P[i];
sp = C[c] + r(c, sp) + 1;
ep = C[c] + r(c, ep) + 1;
i = i - 1;

3. if(sp == ep) return "no match";
Else
 return sp, ep;

Fig. 5. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'.
(b) UNPERMUTE repeatedly applies the last first (LF) mapping to recover
the original text (in red on the top line) from the Burrows-Wheeler trans-
form (in black in the rightmost column). Source: [1].
In the above example of Fig. 5 we use the same text as in Fig-
ure 4, while searching for P = 'aac':

1. First, we initialize sp and ep to define the interval of
rows beginning with the last character in P, which is
'c':
sp = C(c) + 1 = 5.
ep = C(g) + 1 = 7.

2. Next, we consider the preceding character in P, name-
ly 'a'. We redefine the interval as the rows that begin
with 'ac' utilizing the LF mapping. Specifically:
sp = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3.
ep = C(a) + r(a, 7) + 1 = 1 + 3 + 1 = 5.

3. Now, we consider the preceding character, namely 'a'.
We now redefine the interval as the rows that begin
with 'aac'. Specifically:
sp = C(a) + r(a, 3) + 1 = 1 + 0 + 1 = 2.
ep = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3.

4. Having thus covered all positions of P, we return the
final interval calculated (whose size equals the num-
ber of occurrences of P in T).

Note that EXACTMATCH returns the indices of rows in
M that begin with the query, but it does not provide the offset
of each match in T. If we kept the position in T corresponding
to the start of each row we would waste a lot of space. Instead,
we can mark only some rows with pre-calculated offsets.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1018
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Then, if the row where EXACTMATCH found the query has
this of set, we can return it immediately. Otherwise, we can
successively use LF mapping to find a row that has a precalcu-
lated of set, and then we simply need to add the number of
times we applied this procedure to obtain the position in
which we are interested. There is a simple time-space tradeoff
associated with this process.

Example In figure 5 we found the row beginning with
'aac'. Assuming that row has no offset, we can use LF mapping
to reach row 5. If that row has the offset 2, then the desired
offset of 'aac' is 2 + 1 = 3.

Note also that we did not describe how to efficiently com-
pute r(c, i), which is an operation we repeat many times while
running the algorithm. Again, it would be wasteful to save the
value for each occurrence of every character in the text. In-
stead, we can use a similar solution to that used above for
finding the exact index of a match. We store only a subset of
the values and locally compute back from an unknown value
to a stored one. Ferragina and Manzini provide a more effi-
cient (and complicated) solution for this issue [3].

2.4.4 Inexact Matching
We have seen how to find exact matches of a query using BWT
(T). However, to map reads to the genome we must allow for
mismatches. Each character in a read has a numeric quality
value, with lower values indicating a higher likelihood of a
sequencing error. Bowtie defines an alignment policy that
allows a limited number of mismatches and prefers align-
ments where the sum of the quality values at all mismatched
positions is low. The search proceeds similarly to EXACT-
MATCH, calculating matrix intervals for successively longer
query suffixes. If the range becomes empty (a suffix does not
occur in the text), then the algorithm may select an already-
matched query position and substitute a different base there,
introducing a mismatch into the alignment. The EXACT-
MATCH search resumes from just after the substituted posi-
tion. The algorithm selects only those substitutions that are
consistent with the alignment policy and that yield a modified
suffix that occurs at least once in the text. If there are multiple
candidate substitution positions, then the algorithm greedily
selects a position with a maximal quality value. Figure 6
demonstrates this. In the full Bowtie algorithm, backtracking
can allow more than one mismatch, but the size of the back-
tracking stack is bounded by a parameter for efficiency.

3 DOUBLE INDEXING METHOD TO SOLVE EXCESSIVE
BACKTRACKING [1]

Excessive backtracking occurs in some cases for alignments a
sequence. This occurs when the aligner spends most of its ef-
fort fruitlessly backtracking to positions close to the 3' end of
the query. Bowtie mitigates excessive backtracking with the
novel technique of 'double indexing'. Two indices of the ge-
nome are created: one containing the BWT of the genome,
called the 'forward' index and a second containing the BWT

Fig. 6. Example of running the inexact match variant of the Bowtie algo-
rithm. In this example, we try to map the string 'ggta' to the genome, but
we only succeed at mapping 'ggtg'. The array at each level of the back-
tracking shows the row intervals corresponding to suffixes with the 4 nu-
cleotides at that position (in the order a, c, g, t). Source: [1].
of the genome with its character sequence reversed (not re-
verse complemented) called the 'mirror' index. To see how
this helps, consider a matching policy that allows one mis-
match in the alignment. A valid alignment with one mismatch
falls into one of two cases according to which half of the read
contains the mismatch. Bowtie proceeds in two phases corre-
sponding to those two cases. Phase 1 load the forward index
into memory and invokes the aligner with the constraint that it
may not substitute at positions in the query's right half. Phase
2 uses the mirror index and invokes the aligner on the re-
versed query, with the constraint that the aligner may not sub-
stitute at positions in the reversed query's right half (the origi-
nal query's left half). The constraints on backtracking into the
right half prevent excessive backtracking, whereas the use of
two phases and two indices maintains full sensitivity.

Unfortunately, it is not possible to avoid excessive back-
tracking fully when alignments are permitted to have two or
more mismatches. Excessive backtracking is significant only
when a read has many low-quality positions and does not
align or aligns poorly to the reference.

4 THE THREE PHASES OF THE BOWTIE ALGORITHM
FOR THE MAQ-LIKE POLICY [9, 10]

Bowtie allows the user to select the number of mismatches

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1019
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

permitted (default: two) in the high-quality end of a read (de-
fault: the first 28 bases) as well as the maximum acceptable
quality distance of the overall alignment (default: 70). Quality
values are assumed to follow the definition in PHRED [7],
where p is the probability of error and Q = -10log p. Both the
read and its reverse complement are candidates for alignment
to the reference. This discussion considers only the forward
orientation.
 The first 28 bases on the high-quality end of the read
are termed the 'seed'. The seed consists of two halves: the 14
base pair (bp) on the high-quality end (usually the 5' end) and
the 14 bp on the low-quality end, termed the 'hi-half' and the
'lo-half', respectively. Assuming the default policy (two mis-
matches permitted in the seed), a reportable alignment will
fall into one of four cases:
case 1: no mismatches in seed,
case 2: no mismatches in hi-half, one or two mismatches in lo-
half;
case 3: no mismatches in lo-half, one or two mismatches in hi-
half and
case 4: one mismatch in hi-half, one mismatch in lo-half.
 All cases allow any number of mismatches in the non-
seed part of the read and all cases are also subject to the quali-
ty distance constraint.

The Bowtie algorithm consists of three phases that al-
ternate between using the forward and mirror indices, as illus-
trated in Figure 7. Phase 1 uses the mirror index and invokes
the aligner to find alignments for cases 1 and 2. Phases 2 and 3
cooperate to find alignments for case 3: Phase 2 finds partial
alignments with mismatches only in the hi-half and phase 3
attempts to extend those partial alignments into full align-
ments. Finally, phase 3 invokes the aligner to find alignments
for case 4.

5 FULL BOWTIE ALGORITHM [1]
The full Bowtie algorithm consists of four phases. The full
algorithm considers both the forward-oriented read and
reverse-complement of the read. Incorporating the reverse

Fig. 7. The three phases of the Bowtie algorithm for the Maq-like policy. A
three phase approach finds alignments for two-mismatch cases 1 to 4
while minimizing backtracking. Phase 1 uses the mirror index and invokes
the aligner to find alignments for cases 1 and 2. Phases 2 and 3 cooperate
to find alignments for case 3: Phase 2 finds partial alignments with mis-

matches only in the hi-half, and phase 3 attempts to extend those partial
alignments into full alignments. Finally, phase 3 invokes the aligner to find
alignments for case 4. Source: [1].

Fig. 8. The four phases of the Bowtie algorithm.

complement requires introducing a new phase to the begin-
ning of the algorithm that uses the forward index. The new
phase becomes Phase 1 and the three phases described previ-
ously become Phases 2-4. The steps required to align the re-
verse-complement read are analogous to those of the forward-
oriented read, but shifted forward by one phase. The entire
process is “packed” into four phases by interleaving the pro-
cessing of the forward- oriented and reverse-complement ver-
sions of the read.

Finally, we add a check to the beginning of Phase 1 to find
an end-to-end alignment with no mismatches for the forward-
oriented read, if one exists. In this way, we guarantee that
alignments with no mismatches will always be preferred over
alignments with one or more mismatches.

6 SOFTWARE
Bowtie is written in C++. Bowtie is free, open source software
available from the Bowtie website [6].

7 CONCLUSION
In this work, we extensively analyzed different strategies for
mapping of reads to a reference genome. Bowtie does not yet
support paired-end alignment or alignments with insertions or
deletions, although both improvements are planned for the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 1020
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

future. Paired-end alignment is not difficult to implement in
Bowtie's framework, and we expect that Bowtie's performance
advantage will be comparable to, though perhaps somewhat
less than, that of unpaired alignment mode. Support for inser-
tions and deletions are also a conceptually straightforward
addition [1].

Acknowledgment
I express my sincere gratitude to Professor Samar Sen Sarma
(Department of Computer Science & Engineering, University
of Calcutta) and Assistant Professor Sunirmal Khatua (Uni-
versity of Calcutta). They helped me immensely by providing
all sorts of reference books and articles and guided me with
his valuable suggestions and timely advice. This project would
have remained incomplete without their valuable feedback.

I would also like to express my gratitude to Jadavpur Uni-
versity for providing me with a suitable working environ-
ment.

REFERENCES
[1] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and
memory-efficient alignment of short dna sequences to the human ge-
nome.” Genome biology, vol. 10, no. 3, pp. R25+, 2009.
[2] Michael Burrows and David Wheeler, “A block sorting lossless data
compression algorithm”, Technical Report 124, Digital Equipment Corpo-
ration, 1994.
[3] P. Ferragina and G. Manzini, “Opportunistic data structures with ap-
plications,” in Proc. of the 41st Annual Symposium on Foundations of
Computer Science, 2000.
[4] Zhumur Ghosh, Bibekanand Mallick, “BIOINFORMATICS Principles
and Applications”, OXFORD UNIVERSITY PRESS, 2008.
[5] U. Manber and E. W. Myers, Suffix arrays: A new method for on-line
string searches. SIAM Journal on Computing, Volume 22, No. 5, October
1993, pp.935-948.
[6] Bowtie: An ultrafast memory-efficient short read aligner
[http://bowtie.cbcb.umd.edu/]
[7] Ewing B, Green P: Base-calling of automated sequencer traces using
phred. II. Error robabilities. Genome Res 1998, 8:186-194.
[8] H. Li, J. Ruan, and R. Durbin, “Mapping short DNA sequencing reads
and calling variants using mapping quality scores,” Genome Research,
vol. 18, pp. 1851–1858, 2008.
[9] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide
alignment program,” Bioinformatics, vol. 24, no. 5, pp. 713–714, 2008.
[10] H. Lin, Z. Zhang, M. Zhang, B. Ma, and M. Li, “ZOOM! Zillions of
oligos mapped,” Bioinformatics, vol. 24, no. 21, pp. 2431–2437, 2008.
[11] R. A. Lippert, “Space-efficient whole genome comparisons with Bur-
rows-Wheeler transforms,” Journal of Computational Biology, vol. 12, no.
4, pp. 407–415, 2005.
[12] T. Lam, W. Sung, S. Tam, C. Wong, and S. Yiu, “Compressed indexing
and local alignment of DNA,” Bioinformatics, vol. 24, no. 6, pp. 791–797,
2008.
[13] D. Gusfield, Algorithms on strings, trees, and sequences. Cambridge
University Press, 1997.
[14] M.-Y. Kao, Ed., Encyclopedia of Algorithms. Springer, 2008.
[15] D. Bentley, “Whole-genome re-sequencing,” Curr. Opin. Genet. Dev.,
vol. 16, pp. 545–552, 2006.
[16] L. Hillier, G. Marth, A. R. Quinlan, and D. D. et al., “Whole-genome
sequencing and variant discovery in C. elegans,” Nature Methods, vol. 5,
pp. 183–188, 2008.

[17] D. R. Bentley, S. Balasubramanian, and H. P. S. et al., “Accurate whole
human genome sequencing using reversible terminator chemistry,” Na-
ture, vol. 456, no. 7218, pp. 53–59, 2008.
[18] J. Wang, W. Wang, and R. L. et al., “The diploid genome sequence of
an Asian individual,” Nature, vol. 456, no. 7218, pp. 60–65, 2008.

IJSER

http://www.ijser.org/

	1 Problem description
	2 Possible Solutions of the above mapping problem
	2.1 Local Alignment [4, 8, 12]
	2.2 What is my Target?
	2.3 Definition and Problem Formulation
	2.4 Implementation
	2.4.1 Burrows-Wheeler Transform (BWT) [2, 11]
	2.4.2 Reconstructing the Text
	2.4.3 Exact Matching
	2.4.4 Inexact Matching

	3 Double indexing method to solve excessive backtracking [1]
	4 The Three Phases of the Bowtie Algorithm for the Maq-like Policy [9, 10]
	5 Full Bowtie Algorithm [1]
	6 Software
	7 Conclusion
	References

