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Abstract— Any genetic change in a population that is inherited over several generations is called Biological evolution. Biological evolution is a 

scientific theory that was proposed by Charles Darwin in “The Origin of Species by Means of Natural Selection”. Today we need to build a relation 
between the development of methods for the management and analysis of biological information arising from genomics and high-throughput experi-
ments. The development of computational methods for studying the structure, function, and evolution of genes, proteins, and whole genomes form the 
bioinformatics. High-throughput experiments produce large amounts of quantitative data. This poses challenges for bio-informaticians. How do we 
store information is such a way that it can be compared with results from others? How do we best extract meaningful information from the vast amount of 
data? New methods are needed to spot significant trends & patterns in the data. This is a new area of biological sciences where computational methods 
are essential for the progress of the experimental science where algorithms & experimental techniques are being developed side by side.   

 
Index Terms— Read, Alignment, BWT, L-F Mapping, Bowtie, Exact Matching, Inexact Matching, MAQ, Full Bowtie Algorithm.  

——————————      —————————— 

1 PROBLEM DESCRIPTION                                                                     

n March 1953, Watson and Crick deduced the double he-
lix structure of DNA, thus proving that it carried the genetic 

information. The challenge of reading the DNA sequence be-
came central dogma to biological research era. The earliest 
chemical methods for DNA sequencing were extremely not 
fully capable, laborious and costly. Over the next few decades, 
sequencing became more efficient by orders of magnitude. In 
the 1970s, two classical methods for sequencing DNA frag-
ments were developed by Sanger and Gilbert. In the 1980s 
beside these methods, cloning method allowed fast and expo-
nential replication of a DNA fragment. The human genome 
project was started in the 1990s, sequencing efficiency had 
already reached 200,000 bp/person/year, and when it conclud-
ed in 2002 this figure had gone up to 50,000,000 
bp/person/year. Then new sequencing technologies have 
emerged, which now allow the reliable sequencing of 100x109 
bp/person/year. At the same time, the cost of sequencing has 
also sharply declined. 

Sketch the sequencing technology [16, 17, and 18]: 
There are two types of nucleic acid in cells- DNA (Deoxyribo-
nucleic Acid) and RNA (Ribonucleic Acid). DNA is a polymer 
containing chains of nucleotide monomers. Each nucleotide 
contains a sugar, a base, and a phosphate group. The sugar is 
2’-deoxyribose which has five carbons named 1’ (prime) 2’ etc. 
There are four types of base: Adenine (A) and Guanine (G) 
have two carbon-nitrogen rings and are Purines; Thymine (T) 
and Cytosine (C) have a single ring and are pyrimidines. A 
Sugar + A Base = Nucleoside. A nucleotide has one, two or 
three phosphate groups attached to the 5’ carbon of the sugar. 
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A Sugar + A Base + A Phosphate Group = Nucleotide. In RNA 
thymine (T) is replaced by uracil (U) & 2-deoxyribose by ri-
bose. It is a single polynucleotide strand. A, G and T, C form 
the sequence termed as read and they form the input for the 
computational problems. 

We first focus on the problem of aligning the reads to 
the genome. 
 
Problem: Short read mapping problem. 
Input: m l-long reads S1, . . . ,Sm and an approximate reference 
genome R. 
Question: What are the positions x1, . . . ,xm along R where 
each read matches? 

An example of this problem is when we sequence the 
genome [15] of a person and wish to map it to an existing se-
quence of the human genome. The new sample will not be 
100% identical to the reference genome due to the natural var-
iation in the population, and so some reads may align to their 
position in the reference with mismatches or gaps. In diploid 
organisms, such as human beings, different alleles on the ma-
ternal and paternal chromosomes can lead to two slightly dif-
ferent reads mapping to the same location (some perhaps with 
mismatches). Additional complications may arise due to se-
quencing errors or repetitive regions in the genome which 
make it difficult to decide where to map the read. 

2 POSSIBLE SOLUTIONS OF THE ABOVE MAPPING 
PROBLEM 

2.1 Local Alignment [4, 8, 12] 
The problem of aligning a short read to a long genome se-
quence is exactly the problem of local alignment. However, the 
large parameters involved make such an approach impractical. 
In the human genome example, the number of reads m is usu-
ally 107-108, the length of a read l is 50-200 bp and the length of 
the genome |R| is 3.109 bp (or twice, for the diploid genome). 
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Let us consider some other possible solutions: 
I. The most naive algorithm would scan R for each Si, 

matching the read at each position p and picking the 
best match. Time complexity: O (ml|R|) for exact or 
inexact matching. Considering the parameters men-
tioned above, this is clearly impractical. 

II. A less naive solution uses the Knuth-Morris-Pratt al-
gorithm (KMP algorithm) to match each Si to R. 

Time complexity: O (m (l+|R|)) = O (ml + m|R|) for exact 
matching. This is a substantial improvement but still not 
enough. 

III. Building a suffix tree [5] for R provides another solu-
tion. Then, for each Si we can find matches by travers-
ing the tree from the root. Time complexity: 
O(ml+|R|), assuming the tree is built using 
Ukkonen's linear-time algorithm. This time complexi-
ty is certainly practical, and it has the additional ad-
vantage that we only need to build the tree for the 
reference genome once. It can then be saved and used 
repeatedly for mapping new sequences, at least until 
an updated version of the genome is issued.  

However, space complexity now becomes the obstacle the 
leaves of the suffix tree also hold the indices where the suffixes 
begin, saving the tree requires O (|R|log |R|) bits just for the 
binary coding of the indices, compared with |R|log |R|) bits 
for the original text. The constants are also large due to the 
additional layers of information required for the tree (such as 
suffix links, etc.). Thus, we can store the text of the human ge-
nome using ~750MB, but we'd need ~64GB for the tree! The 
resultant size is much greater than the cache memory of most 
of today's desktop computers. Another problem is that suffix 
trees allow only for exact matching. 

IV. A fourth solution is to preprocess the reference ge-
nome into a hash table H. The keys of the hash are all 
the substrings of length l in R, and the value of each 
key is the position p in R where the substring ends. 
Then, given Si the algorithm returns H (Si).  

Time complexity: O (ml + l|R|), which is pretty good. The 
space complexity, however, remains too high at O (l |R| + |R| 
log |R|) since we must also hold the binary representation of 
each substring's position. A practical improvement which can 
be applied is packing the substrings into bit-vectors, that is 
representing each nucleotide as a 2-bit code. This reduces the 
space complexity by a factor of four. Further improvement can 
be achieved by partitioning the genome into several chunks, 
each of the size of the cache memory, and running the algo-
rithm on each chunk in turn. Again, this approach only allows 
exact matching. 

2.2 What is my Target? 
We have seen that one way to map reads to a reference ge-
nome is to index into a hash table either all l-long windows of 
the genome or of the reads. Holding these indices in memory 

requires a great deal of space, as discussed in above section. I 
suggest the Bowtie algorithm [1] to solve this problem. 

2.3 Definition and Problem Formulation 
The Bowtie algorithm, presented in 2009 by Langmead [1], 
solves problem through a more space-efficient indexing 
scheme. This scheme is called the Burrows-Wheeler transform 
[2] and was originally developed for data compression pur-
poses. In the following section, we will describe the transform 
and its uses by following a specific example. 

2.4 Implementation 
2.4.1 Burrows-Wheeler Transform (BWT) [2, 11] 
BWT originally designed for data compression for large text. 
The Burrows-Wheeler transformation of a text T, BWT (T), is 
constructed as follows:  

I. The character $ is appended to T, where $ is not in T 
and is lexicographically less than all characters in T.  

II. The Burrows-Wheeler matrix of T is constructed as 
the matrix whose rows comprise all cyclic rotations of 
T$.  

III. The rows are then sorted lexicographically.  
IV. BWT (T) is the sequence of characters in the rightmost 

column of the Burrows- Wheeler matrix. BWT (T) has 
the same length as the original text T. 

To demonstrate the process, we shall apply the transform 
BWT (T) to T=”the_next_text_that_i_index.": 

I. First, we generate all cyclic shifts of T. 
II. Next, we sort these shifts lexicographically. /* In this 

example we define the character ‘.’ as the minimum 
and we assume that it appears exactly once, as the last 
symbol in the text. It is followed lexicographically by 
‘.’, which is followed by the English letters according 
to their natural ordering. We call the resulting matrix 
M. */ 

We now define the transform BWT (T) as the sequence of 
the last characters in the rows of M. /* Figure1 shows an ex-
ample for the first few shifts. Note that this last column is a 
permutation of all characters in the text since each character 
appears in the last position in exactly one cyclic shift. */ 
 

 
Fig. 1. Some of the cyclic shifts of T sorted lexicographically and indexed 
by the last character.  
Saving BWT (T) requires the same space as the size of the text 
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T since it is simply a permutation of T. In the case of the hu-
man genome, we saw that each character can be represented 
by 2 bits, so we require ~2.3.109 bits for storing the permuta-
tion instead of ~30.3.109 for storing all indices of T. 
Thus far, we have seen how to transform a text T into BWT (T). 
Let us now consider what information can be gleaned from 
BWT (T), assuming we do not see T or M: 

I. The first question we can ask is: given BWT (T), how 
many occurrences in T of the character 'e'?  
We can easily answer this by counting the number of 
occurrences of 'e' in BWT (T) since we have shown 
that this is simply a permutation of the text. 

II. Can we also recover the first column of the matrix M?  
Certainly! All we have to do is sort BWT (T) since the 
first column is also a permutation of all characters in 
the text, sorted lexicographically. Figure2 demon-
strates this. 

 
Fig. 2. Recovering the first column (left) by sorting the last column. 

III. How many occurrences of the substring 'xt' do we 
have in T?  

BWT (T) is the last column of the lexico-
graphical sorting of the shifts. Hence, the character at 
the last position of a row appears in the text T imme-
diately prior to the first character in the same row 
(each row is a cyclical shift). So, to answer this ques-
tion, we consider the interval of  't' in the first column, 
and check whether any of these rows have an 'x' at the 
last position. In Figure 2, we can see that there are two 
such occurrences. 

IV. Now we can recover the second column as well.  
We know that 'xt' appears twice in the text, 

and we see that 3 rows start with an 'x'. Two of those 
must be followed by a 't', but which ones? The lexico-
graphical sorting determines this as well. In the above 
example, another 'x' is followed by a '.' (see first row). 

Therefore, '.' must follow the first 'x' in the first col-
umn since '.' is smaller lexicographically than 't'. The 
second and third occurrences of 'x' in the first column 
are therefore followed by ’t’. We can use the same 
process to recover the characters at the second column 
for each interval, and then the third, etc. 

We have thus shown two central properties of the transform, 
which we now state formally following a formulation by Fer-
ragina and Manzini [3]. 
Lemma1 (Last-First Mapping): 
Let M be the matrix whose rows are all cyclical shifts of T sort-
ed lexicographically, and let L(i) be the character at the last 
column of row i and F(i) be the first character in that row.  
Then: 

I. The ith row of M, its last character L[i] precedes its 
first character F[i] in the original text T, namely T 
=…L(i) F(i)…. 

II. The j-th occurrence of character X in L corresponds to 
the same text character as the j-th occurrence of X in F. 
Let L[i] = c and let ri be the rank of the row M[i] 
among all the rows ending with the character c. Take 
the row M[j] as the ri-th row of M starting with c. 
Then the character corresponding to L[i] in the first 
column F is located at F[j] (we call this LF-mapping, 
where LF[i] = j). 

Proof: 
I. Follows directly from the fact that each row in M is a 

cyclical shift. 
II. Let Xj denote the j-th occurrence of char X in L, and 

let α be the character following Xj in the text and β the 
character following Xj+1. Then, since Xj appears above 
Xj+1 in L, α must be equal or lexicographically small-
er than β. This is true since the order is determined by 
lexicographical sorting of the full row and the charac-
ter in F follows the one in L (property 1). Hence, when 
character Xj appears in F, it will again be above Xj+1, 
since α and β now appear in the second column and 
Xα ≤ Xβ (Figure 3 demonstrates this). 

 
Fig. 3. Last-first mapping. Each 't' character in L is linked to its 

position in F and no crossed links are possible. 
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2.4.2 Reconstructing the Text 
We now present an algorithm for reconstructing a text T from 
its Burrows-Wheeler transform BWT (T) utilizing Lemma1. In 
this formulation, we assume the actual text is of length u and 
we append a unique $ character at the end, which is the small-
est, lexicographically (the '.' character played the role of $ in 
our example above). 
We are therefore ready to describe the backward BWT: 
UNPERMUTE [BWT(T)]: 

I. Compute the array C[1,…, |∑|] : C(c) is the no. of 
characters {$,1,….,c-1} in T. 

II. Construct the last-first mapping, tracing every charac-
ter in L to its corresponding position in F: 
LF[i] = C(L[i]) + r(L[i], i) + 1, where r(c, i) is the num-
ber of occurrences of character c in the prefix L[1, i]. 

III. Reconstruct T backwards as follows: s = 1, T(u) = L[1]; 
(because M[1] = $T); then, for each i = u-1, . . . ,1 do s = 
LF[s] and T[i] = L[s]. 

 
Fig. 4. Steps taken by EXACTMATCH to identify the range of rows, and 
thus the set of reference suffixes, prefixed by 'aac'. Source: [1]. 
In the above example of Fig. 4, T = acaacg$ (u = 6) was trans-
formed to BWT (T) = gc$aaac, and we now wish to reconstruct 
T from BWT (T) using UNPERMUTE: 

I. First, the array C is computed. /* For example, C(c) = 4 
since there are 4 occurrences of characters smaller 
than 'c' in T (in this case, the '$' and 3 occurrences of 
'a'). Notice, that C(c) + 1 = 5 is the position of the first 
occurrence of 'c' in F. */ 

II. Second, we perform the LF mapping. /* For example, 
LF[c2] = C(c) + r(c,7) + 1 = 6, and indeed the second 
occurrence of 'c' in F sits at F[6]. */ 

III. Now, we determine the last character in T: T(6) = L(1) 
= 'g'. 

IV. We iterate backwards over all positions using the LF 
mapping. /* For example, to recover the character 
T(5), we use the LF mapping to trace L(1) to F(7), and 
then T(5) = L(7) = 'c'. */ 

Remark We do not actually need to hold F in memory, which 
would double the space we use. Instead, we only keep the ar-
ray C defined above, of size |∑|, which we can easily obtain 
by looking at L alone. 
 
2.4.3 Exact Matching 

Next, we present an algorithm for exact matching of a query 

string P to T given BWT (T). The principle is very similar to 
UNPERMUTE, and we use the same definitions presented 
above for C and r(c, i). We denote by sp the position of the first 
row in the interval of rows in M we are currently considering, 
and by ep the position of the first row beyond this interval. So, 
the interval is defined by the rows sp ,…, ep - 1. 
EXACTMATCH [P[1, . . . , p], BWT (T)] 

1. c = P[p]; sp = C[c] + 1; ep = C[c+1] + 1; i = p - 1; 
2. while sp < ep and i ≥ 1 

c = P[i]; 
sp = C[c] + r(c, sp) + 1; 
ep = C[c] + r(c, ep) + 1; 
i = i - 1; 

3. if(sp == ep) return "no match"; 
Else 
       return sp, ep; 
 

 
 
Fig. 5. (a) The Burrows-Wheeler matrix and transformation for 'acaacg'.  
(b) UNPERMUTE repeatedly applies the last first (LF) mapping to recover 
the original text (in red on the top line) from the Burrows-Wheeler trans-
form (in black in the rightmost column). Source: [1]. 
In the above example of Fig. 5 we use the same text as in Fig-
ure 4, while searching for P = 'aac': 

1. First, we initialize sp and ep to define the interval of 
rows beginning with the last character in P, which is 
'c': 
sp = C(c) + 1 = 5. 
ep = C(g) + 1 = 7. 

2. Next, we consider the preceding character in P, name-
ly 'a'. We redefine the interval as the rows that begin 
with 'ac' utilizing the LF mapping. Specifically: 
sp = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3. 
ep = C(a) + r(a, 7) + 1 = 1 + 3 + 1 = 5. 

3. Now, we consider the preceding character, namely 'a'. 
We now redefine the interval as the rows that begin 
with 'aac'. Specifically: 
sp = C(a) + r(a, 3) + 1 = 1 + 0 + 1 = 2. 
ep = C(a) + r(a, 5) + 1 = 1 + 1 + 1 = 3. 

4. Having thus covered all positions of P, we return the 
final interval calculated (whose size equals the num-
ber of occurrences of P in T). 

Note that EXACTMATCH returns the indices of rows in 
M that begin with the query, but it does not provide the offset 
of each match in T. If we kept the position in T corresponding 
to the start of each row we would waste a lot of space. Instead, 
we can mark only some rows with pre-calculated offsets. 
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Then, if the row where EXACTMATCH found the query has 
this of set, we can return it immediately. Otherwise, we can 
successively use LF mapping to find a row that has a precalcu-
lated of set, and then we simply need to add the number of 
times we applied this procedure to obtain the position in 
which we are interested. There is a simple time-space tradeoff 
associated with this process. 

Example In figure 5 we found the row beginning with 
'aac'. Assuming that row has no offset, we can use LF mapping 
to reach row 5. If that row has the offset 2, then the desired 
offset of 'aac' is 2 + 1 = 3. 

Note also that we did not describe how to efficiently com-
pute r(c, i), which is an operation we repeat many times while 
running the algorithm. Again, it would be wasteful to save the 
value for each occurrence of every character in the text. In-
stead, we can use a similar solution to that used above for 
finding the exact index of a match. We store only a subset of 
the values and locally compute back from an unknown value 
to a stored one. Ferragina and Manzini provide a more effi-
cient (and complicated) solution for this issue [3]. 
 
2.4.4 Inexact Matching 
We have seen how to find exact matches of a query using BWT  
(T). However, to map reads to the genome we must allow for 
mismatches. Each character in a read has a numeric quality 
value, with lower values indicating a higher likelihood of a 
sequencing error. Bowtie defines an alignment policy that 
allows a limited number of mismatches and prefers align-
ments where the sum of the quality values at all mismatched 
positions is low. The search proceeds similarly to EXACT-
MATCH, calculating matrix intervals for successively longer 
query suffixes. If the range becomes empty (a suffix does not 
occur in the text), then the algorithm may select an already-
matched query position and substitute a different base there, 
introducing a mismatch into the alignment. The EXACT-
MATCH search resumes from just after the substituted posi-
tion. The algorithm selects only those substitutions that are 
consistent with the alignment policy and that yield a modified 
suffix that occurs at least once in the text. If there are multiple 
candidate substitution positions, then the algorithm greedily 
selects a position with a maximal quality value. Figure 6 
demonstrates this. In the full Bowtie algorithm, backtracking 
can allow more than one mismatch, but the size of the back-
tracking stack is bounded by a parameter for efficiency. 

3 DOUBLE INDEXING METHOD TO SOLVE EXCESSIVE 
BACKTRACKING [1] 

Excessive backtracking occurs in some cases for alignments a 
sequence. This occurs when the aligner spends most of its ef-
fort fruitlessly backtracking to positions close to the 3' end of 
the query. Bowtie mitigates excessive backtracking with the 
novel technique of 'double indexing'. Two indices of the ge-
nome are created: one containing the BWT of the genome, 
called the 'forward' index and a second containing the BWT  

 
 
Fig. 6. Example of running the inexact match variant of the Bowtie algo-
rithm. In this example, we try to map the string 'ggta' to the genome, but 
we only succeed at mapping 'ggtg'. The array at each level of the back-
tracking shows the row intervals corresponding to suffixes with the 4 nu-
cleotides at that position (in the order a, c, g, t). Source: [1]. 
of the genome with its character sequence reversed (not re-
verse complemented) called the 'mirror' index. To see how 
this helps, consider a matching policy that allows one mis-
match in the alignment. A valid alignment with one mismatch 
falls into one of two cases according to which half of the read 
contains the mismatch. Bowtie proceeds in two phases corre-
sponding to those two cases. Phase 1 load the forward index 
into memory and invokes the aligner with the constraint that it 
may not substitute at positions in the query's right half. Phase 
2 uses the mirror index and invokes the aligner on the re-
versed query, with the constraint that the aligner may not sub-
stitute at positions in the reversed query's right half (the origi-
nal query's left half). The constraints on backtracking into the 
right half prevent excessive backtracking, whereas the use of 
two phases and two indices maintains full sensitivity. 

Unfortunately, it is not possible to avoid excessive back-
tracking fully when alignments are permitted to have two or 
more mismatches. Excessive backtracking is significant only 
when a read has many low-quality positions and does not 
align or aligns poorly to the reference. 

4 THE THREE PHASES OF THE BOWTIE ALGORITHM 
FOR THE MAQ-LIKE POLICY [9, 10] 

Bowtie allows the user to select the number of mismatches 
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permitted (default: two) in the high-quality end of a read (de-
fault: the first 28 bases) as well as the maximum acceptable 
quality distance of the overall alignment (default: 70). Quality 
values are assumed to follow the definition in PHRED [7], 
where p is the probability of error and Q = -10log p. Both the 
read and its reverse complement are candidates for alignment 
to the reference. This discussion considers only the forward 
orientation. 
 The first 28 bases on the high-quality end of the read 
are termed the 'seed'. The seed consists of two halves: the 14 
base pair (bp) on the high-quality end (usually the 5' end) and 
the 14 bp on the low-quality end, termed the 'hi-half' and the 
'lo-half', respectively. Assuming the default policy (two mis-
matches permitted in the seed), a reportable alignment will 
fall into one of four cases:  
case 1: no mismatches in seed,  
case 2: no mismatches in hi-half, one or two mismatches in lo-
half; 
case 3: no mismatches in lo-half, one or two mismatches in hi-
half and 
case 4: one mismatch in hi-half, one mismatch in lo-half. 
 All cases allow any number of mismatches in the non-
seed part of the read and all cases are also subject to the quali-
ty distance constraint. 

The Bowtie algorithm consists of three phases that al-
ternate between using the forward and mirror indices, as illus-
trated in Figure 7. Phase 1 uses the mirror index and invokes 
the aligner to find alignments for cases 1 and 2. Phases 2 and 3 
cooperate to find alignments for case 3: Phase 2 finds partial 
alignments with mismatches only in the hi-half and phase 3 
attempts to extend those partial alignments into full align-
ments. Finally, phase 3 invokes the aligner to find alignments 
for case 4. 

 
5 FULL BOWTIE ALGORITHM [1] 
The full Bowtie algorithm consists of four phases. The full 
algorithm considers both the forward-oriented read and 
reverse-complement of the read. Incorporating the reverse 
 

 
Fig. 7. The three phases of the Bowtie algorithm for the Maq-like policy. A 
three phase approach finds alignments for two-mismatch cases 1 to 4 
while minimizing backtracking. Phase 1 uses the mirror index and invokes 
the aligner to find alignments for cases 1 and 2. Phases 2 and 3 cooperate 
to find alignments for case 3: Phase 2 finds partial alignments with mis-

matches only in the hi-half, and phase 3 attempts to extend those partial 
alignments into full alignments. Finally, phase 3 invokes the aligner to find 
alignments for case 4. Source: [1]. 

 
 

Fig. 8. The four phases of the Bowtie algorithm. 

complement requires introducing a new phase to the begin-
ning of the algorithm that uses the forward index. The new 
phase becomes Phase 1 and the three phases described previ-
ously become Phases 2-4. The steps required to align the re-
verse-complement read are analogous to those of the forward-
oriented read, but shifted forward by one phase. The entire 
process is “packed” into four phases by interleaving the pro-
cessing of the forward- oriented and reverse-complement ver-
sions of the read. 

Finally, we add a check to the beginning of Phase 1 to find 
an end-to-end alignment with no mismatches for the forward-
oriented read, if one exists. In this way, we guarantee that 
alignments with no mismatches will always be preferred over 
alignments with one or more mismatches. 

 
6 SOFTWARE 
Bowtie is written in C++. Bowtie is free, open source software 
available from the Bowtie website [6].  

7 CONCLUSION 
In this work, we extensively analyzed different strategies for 
mapping of reads to a reference genome. Bowtie does not yet 
support paired-end alignment or alignments with insertions or 
deletions, although both improvements are planned for the 
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future. Paired-end alignment is not difficult to implement in 
Bowtie's framework, and we expect that Bowtie's performance 
advantage will be comparable to, though perhaps somewhat 
less than, that of unpaired alignment mode. Support for inser-
tions and deletions are also a conceptually straightforward 
addition [1]. 
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